
I Can’t Help Myself! "Asking for Help" through an Elicitation Study
in the Wild

Claire Liang∗1, Andy Elliot Ricci∗2, Malte F. Jung3, Hadas Kress-Gazit4

Abstract— In this work, we examine robots “asking for help"
in unpredictable human spaces. We focus on an open question
particularly relevant for robots deployed in public– “how do
people help robots?" We present an elicitation study that
shows how asking for help in a real-world field study yields
valuable and sometimes unexpected information. From our
study, we examine strangers’ responses toward a robot asking
for spatial directions and extract valuable themes that can
inform future asking-for-help systems. Our analysis provides
a wide range of information, from geometric and topological
information in natural language to details about rejection
during an interaction. Further, we also provide anecdotes of
valuable outlier behavior that can only be captured through a
study in a real public space. Through our work, we highlight
the importance of in-the-wild studies and discuss how the rich
information they contribute will help robots effectively ask for
help.

I. INTRODUCTION

In real-world deployments, there can be gaps between ex-
pected performance and a robot’s reality. In these scenarios,
robots that can ask for help are better equipped to recover
and succeed in their tasks. However, asking for help in the
real world can be messy; the problems encountered in a lab
study rarely capture the range of unexpected behaviors found
in the real world. Often, these are most pronounced for robots
deployed in public spaces because it is difficult to emulate
organic interactions in the lab.

Some of these robots are currently deployed despite the
difficulty of establishing ecological validity in a controlled
study. For example, navigation robots in airports and other
public spaces are already a billion-dollar industry [1]. Yet,
these robots still have awkward interactions with the people
they’re supposed to assist [2]–[4], sometimes fail altogether,
and struggle with the physical limitations of their sys-
tems [5]. If these navigating robots are to be deployed further,
the success and adaptability of these robots may hinge on
their ability to recover from failure in a human-friendly way.

In this paper, we show the value of investing in the
problem of “asking for help” using an in-the-wild public
study, especially for systems whose success may depend
on brief interactions with strangers. Motivated by real-world
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Fig. 1: A robot asking for directions during our in-the-wild
study.

failures of robots in airports, we use “direction giving" for
robots navigating in human spaces as a case study. We
show that by investigating the simple question of asking for
directions, we can uncover a lot of unexpected, real, complex
dynamics that can’t be anticipated in theory or in the lab.

In this work, we analyze the natural language responses
that robots’ human counterparts provide as well as their
reactions to different types of navigating robots via a post-
interaction semi-structured interview. We present findings–
such as how to express spatial information– that are impor-
tant for relevant future navigating robot systems, but beyond
that, we also include results that are informative for all
systems that are deployed in these types of public spaces;
some of the most valuable lessons from this study are the
unexpected ones: communication outside of natural language
utterances, angry outbursts, unanticipated group dynamics,
and the complexity of rejection.

II. RELATED WORK

Since there are a wide variety of scenarios in which a
robot may ask for help, there is a large and diverse body
of existing work about what strategies robots should take.
Some algorithms enable robots to generate and respond to
help requests [6], [7], systems that can execute the interaction
for specific applications, and human-robot interaction studies
exploring how people react to help requests [8], [9]. Each
piece of existing research addresses important components of
the robot asking for help process– such as how to formulate a
help request or how to use a human response. This body of
work provides many insights into human-robot interaction
dynamics and algorithmic contributions for incorporating
asking-for-help behavior in robot systems.

A. Aligning Psychology and Robotics: Understanding Ask-
ing for Help

To categorize existing work, we combine two perspectives:
psychology and robotics theory. We find that the two angles



share key similarities, and by uniting them, we can under-
stand the problem of asking for help from both the human
and the robot’s perspectives.

Theory from childhood cognitive development [10] pro-
vides a general framework for breaking down the process
of asking for help. 1. “Initiation,” 2. “Formulation” 3.
“Expression,” and 4. “Response evaluation and follow up.”
In [11]’s “Checklist for Needy Robots," the stages are: a.
“Determining the robot needs help," b. “Who to ask, When
to ask, and Where to ask," c. “What to ask and How to ask,"
and d. “What to do after receiving help".

We present a non-exhaustive collection of valuable ex-
isting asking-for-help literature through this “checklist” and
“framework” lens.

1) Initiation: Determining that the robot needs help
For most “asking for help" systems, identifying when the

robot is stuck or has encountered a failure [8] is equivalent
to determining that the robot needs help [12]. All details of
the process must be considered, such as anticipating an ask
before failure [13] or optimizing timing [14].

2) Formulation: Who, when, and where to ask
Once the robot has determined that it needs to request help,

it sets itself up to initiate an interaction. This means finding
people to ask [15], determining when or if it is effective to
ask a particular person for help [14], identifying the best
location at which to ask [16], as well as when to and who
to initiate an interaction [17].

3) Expression: What to ask and how to ask
Asking for help is more complex than a simple call of

the word “help!" The way the robot calls attention to itself
is a critical choice– [18] shows that while a robot might
get more help when asking using natural language, requests
communicated through beeping might evoke more empathy.

If using natural language, the execution of the request
is important [19], as one must determine the correct level
of specificity for the ask (lest the person deems the robot’s
request annoying [11]). Question generation is closely linked
to language-generation systems as a whole [6], including
template-based [20]and LLM approaches [21].

4) Response Evaluation and Follow Up: What to do
after receiving help

Depending on the application, robots receive different
kinds of help. In [12], the response to the robot’s request for
help is an action the human performs that allows the robot
to achieve its goal. In other scenarios, the robot receives
information, such as directions [22], rather than assistance.

When the help comes in the form of knowledge or
information, the robot then has the opportunity to use it as
it sees fit [23]–[26].

In other cases, the ask for help is not finished upon first
exchange. The robot may need to explain its reason for
failure [27] or follow up with clarification requests [28].
For example, [29] contributes a system that handles asking
follow-up questions for a person’s request to help disam-
biguate objects in the environment.

B. In-The-Wild Methodology

In human robot interaction communities, in-the-wild
(sometimes referred to as field) studies are conducted in the
real world, as opposed to a controlled laboratory setting [30]
and are often used to evaluate real-world deployments of
robot systems– for example, in airports [3]– and to study
how people interact with robots– such as how people interact
with delivery robots [31]. In-the-wild studies can be used
to extract even more complex findings. For example, prior
work has used emerging types of human-robot interactions
to elicit responses, for example, to a robot trash barrel [32].
These studies provide valuable insights into human-robot
interactions that inform robot design and deployment. For
instance, [33] used prior in-the-wild HRI research findings to
develop a placemaking framework for robot design. Overall,
in-the-wild methods allow us to study robots in the real
world, which can provide valuable insights into real-world
human-robot interactions, providing a greater amount of
ecological validity than controlled lab studies [30].

Because in-the-wild studies are less controlled than lab
studies, the conclusions we can draw are different [30]. For
example, in-the-wild studies allow us to learn about types
of interactions that we would not have expected, including
bullying behavior [34], [35]. The field of HRI has been
reckoning with the question of how to balance the need for
generalization and verifiability that comes from controlled
studies with statistical significance and the ecological validity
and findings from real-world studies [36], [37].

This paper is interested in how humans interact with robots
in public spaces. Therefore an in-the-wild study is well-
suited for this work. Our approach is similar to prior in-the-
wild studies exploring how people interact with robots [38],
[39].

III. OUR OPEN QUESTIONS

Through our study we want to examine what humans
bring to an asking-for-help interaction. Namely, what we
should expect from them to best perform “Formulation” and
“Expression.” Having an understanding of these interactions
would also inform “Response Evaluation and Follow Up’.’

As a result, we picked two directions of investigation that
are relevant topics of interest shared across several of the
existing methods and systems from the related work listed
above.
The Language We Use to Help Robots We have systems
that process help from humans and use that information in
ways such as, failure recovery and map updates. However,
the form of help expected in these systems can be narrow.

For example, most system contributions and deployed
robots assume communication to primarily be natural lan-
guage utterances, either written or spoken [40]. Those that
go beyond natural language utterances may consider other
inputs, such as gestures, to improve an interaction [23], [41],
[42].

However, assumptions about natural language go beyond
the primary use of utterances. It sometimes extends to the
grammatical structure and content of the utterance. For



example, a common implicit assumption for spatial tasks,
such as navigation, is that robots should default to using
landmarks in their natural language descriptions of paths.
For example, while [43]’s compound action specification
actions (travel, turn, face, verify, and find) do not require the
use of landmarks in directions, when sentence planning, the
iteration is “constrained to use only objects and properties
of the environment visible to the follower” implicitly stating
that the use of landmarks is an assumption for this model.

Although rooting directions in landmarks is common and
caters well to semantic maps, using landmarks is not uni-
versal. [23] finds that people initially gave spatial directions
with metric information and then shifted to landmark-based
communication throughout a longer interaction.

In our study, we seek to pull on these threads and
understand how conveying spatial information may impact
how humans communicate with robots and what part natural
language plays in their instructions.

Robot Form’s Impact on Human Behavior: We know
that changing the robot’s physicality can impact human-robot
interaction. Prior work in asking for help has studied the
impact factors such as the robot’s visual cues [44], the robot’s
behavior [42], and the robot’s level of autonomy [45]. [45]
found that people helped a robot they perceived to be fully
autonomous more quickly than one they believed to be
teleoperated.

In HRI more broadly, we see some discussion of ideas
about how robot factors influence interactions in theory on
perceptions and attitudes towards social robots [46], [47],
including anthropomorphism [48], and depiction theory [49].
In this work, we are interested in how two robot forms
already deployed in real systems affect humans’ responses,
especially regarding the language they use and their attitudes
toward the robot’s request.

[45]’s finding about a difference in reactions towards
telepresence robots and perceived autonomous robots is
particularly relevant for robots asking for help in the wild,
as telepresence robots are already widely deployed in public
spaces today. To investigate the ecological validity of their
findings further, we selected these two robot forms for further
investigation.

IV. OUR STUDY

We conducted an in-the-wild study with two robot forms to
understand how humans give directions to robots. We focus
on a specific type of help request, spatial directions [22],
[23], and explore both “the language of help” and “the
impact of robot form”. In the study, we remotely operated a
Beam robot to approach people in public spaces and ask for
directions to other locations in the building. To explore robot
form, we ran the study under two different robot conditions
already used in real-world systems: a telepresence robot and
an autonomous robot. We used a Wizard of Oz approach for
the autonomous robot condition [24]. An early version of
this work without results and analysis is available in [50].

Fig. 2: The two study conditions. Both robots are equipped
with a basket of items for delivery. The telepresence robot
is shown on the left with the operator’s face on the screen.
The perceived autonomous robot shows an example of the
sound visualization mid-speech.

A. Telepresence Robot

We used a Beam Pro telepresence robot for both study
conditions, as shown in Fig. 2. An experimenter, referred
to as the robot operator or remote user, remotely operated
the robot using the provided interface, shown in Fig. 3. The
experimenter had video streams from two cameras on the
robot and interacted with participants through the video-
conferencing capabilities. In the telepresence condition, the
experimenter’s face was shown on the robot’s screen, and
their voice was not changed. In the autonomous condition,
the experimenter’s face was replaced with a sound wave
visualization of their speech, and the experimenter’s voice
was augmented to sound robotic. The visualization was
generated in real-time using OBS Studio [51], and the voice
was modulated with VoiceMod [52].

B. Study Location

We conducted the study in two university buildings, Build-
ing A and Building B. We used only public spaces and
conducted each study session on two floors of one of the
buildings. We conducted three sessions in Building A and
one session in Building B. Building A has an L-shaped
hallway that connects multiple open spaces, and Building
B has an H-shaped layout with one large open space and
hallways connecting multiple closed rooms.

The experimenter chose the goal locations based on the
robot’s current location. Before the study, we selected a set
of locations for each building, including elevators, water
fountains, lounges, and lecture halls. The robot operator
asked for directions to goal locations that were between 2
and 20 meters from the robot’s location.
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Fig. 3: The control interface for the Beam robot. The front
camera view is shown on the top left, the downward-
facing camera is shown on the bottom left, and the robot
operator’s view– what a participant sees on the screen in the
telepresence condition– is on the bottom right.

C. Procedure

During the study, one researcher was the robot operator
and remotely controlled the robot. The other researcher was
with the robot to obtain consent and conduct interviews. In
each study session, the robot operator drove the robot around
the study location to look for people to ask for directions.
When the robot operator saw someone, they approached them
and asked for directions. The opening script was:

‘Hi, can I ask for directions?”
If the person said yes or otherwise indicated that they were
willing to engage with the robot, the operator proceeded to
ask for directions to a goal location:

“Do you know how to get to [goal location]?”.
After the participant gave directions, the operator drove

away, following the provided directions as much as possible.
Then, the local experimenter approached the participant,
obtained consent, and asked if they could conduct a brief
interview. Not all participants provided interviews.

In cases where a person was prompted for directions and
either ignored the robot, said no, or otherwise indicated that
they didn’t want to give directions, the operator did not
ask them for directions again. These people did not give
consent and are not counted as study participants. Thus,
we are unable to analyze the video collected during those
interactions.

If a person asked what the robot was doing or questioned
why it asked for directions, the operator explained that
it was performing a delivery task. The local experimenter
periodically changed the item in the robot’s basket to provide
visual evidence of the delivery task.

The robot continuously moved throughout the study space
during each session and changed floors. This movement
helped us sample participants who had not observed the robot
interact with other people.

1) Semi-Structured Interview: The local experimenter
conducted optional semi-structured interviews with partic-
ipants who gave directions to the robot. The two guiding
interview questions were the following:

• “How was it interacting with this robot and giving
directions?”

• “Do you think you give directions differently to the
robot than you would to me?”

The experimenter adjusted the interview questions based on
the participant’s responses to understand their experiences
with the robot.

D. Data Collection & Analysis

We recorded video from the robot’s cameras to capture
all of the interactions with the robot and audio-recorded
the semi-structured interviews. We used the footage from
each consenting participant to create a transcript of the
directions given, both nonverbally and through gestures (such
as pointing). We used the audio recordings to transcribe the
semi-structured interviews.

We performed a qualitative analysis of the transcribed
interview data for the directions given and how partici-
pants perceived the robot’s identity. The two experimenters
analyzed the transcribed data using a thematic analysis
process [53] and iteratively constructed codes and themes.

For the “directions given,” we grounded our data analysis
in the existing literature, including the three forms of spatial
arrangement maps described in [9]. After breaking the direc-
tion transcripts into sentences, we assigned codes as follows
(more specific definitions are in Section IV-D.1):

• A fixed set of phrases, “this/that way”, “go straight”,...,
“turn left/right” are labeled as topological. Each in-
teraction is labeled as “topological” or “metric” if all
sentences are consistent in one category. Any with both
are labeled as “hybrid.”

• Landmarks are destinations or objects described with
enough detail that they are uniquely distinguishable and
used inextricably from the direction instructions.

• Gestures are labeled as “crucial” if the utterances are
ambiguous without the gesture’s inclusion.

We did not evaluate the directions for correctness since
we were only interested in how participants gave directions
and not how well they knew the study locations.

1) Definitions for data analysis:
Topological vs Metric directions We consider a sentence

in a set of directions to be metric if it contains metric
information, such as a distance or an angle of rotation–
directing towards a single specific trajectory.

We consider topological directions to be directions that
dictate a class of paths up to interpretation for the robot.
A sentence is counted as topological if either 1. It uses
landmarks 2. It assumes that the robot can determine how
far it needs to go or how much it needs to turn (oftentimes,
this is paired with gestures). For point 2, key phrases are
‘‘this way”, “that way”, “down [that] way”, turn “left”
or “right”, or your “left” or “right”, “turn around”, “go
straight”, “over there” with no further clarification.

We take each participant’s interaction and analyze their
utterances sentence by sentence. Each sentence is considered
as “metric" or “topological.” For the entire interaction, we as-
sign one of three labels: “metric”, “topological”, or “hybrid”.
A set of directions is considered metric if it exclusively uses



metric sentences, it is considered topological if it exclusively
uses topological directions, and it is considered hybrid if it
contains a mixture of both.

Landmarks We count a destination or object as a land-
mark if it is described with enough detail that it is distin-
guishable in the scene and is also used in an inextricable
way from the direction instructions. For example, in the
phrase: “Turn at the first doors on the left,” the doors
are a landmark since enough information is given that the
doors are identifiable (they are the first on the left), and the
action “turn” is tied to the doors. The phrase: “The door is
over there” does not contain a landmark because although
the doors are uniquely identifiable, there are no direction
instructions associated with the doors.

Gesture We categorized gestures into two categories:
“crucial” and “non-crucial.” Gestures are considered “cru-
cial” if the utterances are ambiguous without adding the
information from the gesture. Gestures are “non-crucial”
if the utterances can be interpreted independently and the
gestures align with the directions.

E. Participants

To best capture natural interactions, we engaged with
people in university building public spaces and then informed
participants that the robot was part of a study only after their
interactions. We did not collect any demographic data from
the participants; however, since the study was conducted in a
university building, it was likely that most participants were
students, faculty, and staff.

A researcher approached participants after they gave di-
rections to the robot to give them an information sheet about
the study and to obtain verbal consent. The interactions of
people who did not give verbal consent are excluded from
the analysis. We recorded video from the robot during the
study. We posted “Recording in Progress” signs in the study
locations with the researcher’s contact information, allowing
people to opt out of being recorded. The study was approved
by Cornell University IRB (IRB0145990).

We conducted two study sessions per condition across four
different days. We operated for about 2.5 hours per condition
for about 5 hours. We exclude a fifth session due to a video-
recording error. A total of 111 people gave directions to the
robot and consented to analysis.

Our dataset contains 48 transcribed interviews, 24 per
condition; not all participants agreed to be interviewed. We
excluded 18 participants from the analysis because they
either knew the robot operator, knew about the research
project, or had previously participated in the study. After the
exclusions, we had 46 participants in the telepresence condi-
tion and 47 in the autonomous condition. Some participants
gave directions in groups. Thus, we had 34 direction-giving
interactions per condition and 68 total.

V. RESULTS

A. Communication of spatial information

1) Metric vs Topological: We found that only 3 out of
the 68 interactions contained hybrid instructions, 2 in the

Condition # Crucial # Non-Crucial Only # No Gesture
Telepresence 27 7 0
Autonomous 20 12 2

TABLE I: Interactions that contained crucial gestures, non-
crucial gestures only, or no gestures.

Condition #Gest only #Land only #Gest + Land #Neither
Telepresence 11 1 16 6
Autonomous 12 5 8 9

TABLE II: Interactions that included crucial gesture only,
landmarks only, both crucial gesture and landmarks, or
neither

autonomous condition, and 1 in the telepresence condition.
All other instructions were strictly topological.
Direction Example 1:

“You’re gonna want to turn, uhh, what– let’s say
130 degrees from where to the right from where
you now are. You’re gonna want to go straight
about 20 feet and make a left... go straight until
you can’t go anymore and then make another left.
Just keep going and you’ll see the water fountains.”
(P6, Telepresence Condition)

We present Direction Example 1 to show metric and
topological language side by side; we refer to this as hybrid
directions. Here, the metric indicators are the 130 degrees
and the 20 feet. Topological indicators are “make another
left” and “keep going” and the landmark indicator “until you
can’t go anymore.”

The use of topological directions and landmarks does align
the structure of directions described in [9] as well as the
dialogue in studies such as [25], [54]. This common recurring
assumption in the literature has ecological validity supported
by the findings of this elicitation study.

2) Gesture: We found that participants gestured while
giving directions to the robot in all but two interactions.
Furthermore, we observed that some gestures contained
critical information that was not communicated verbally. We
refer to these as crucial gestures.

For example, the verbal directions “Yeah, that way” are
incomplete without the accompanying pointing gesture (P
56, Telepresence Condition). The number of interactions
containing gestures is shown in Table I.

Another notable finding of the field study was how inte-
grated gestures and landmarks were to the participants’ in-
structions. As seen in Table II, for the telepresence condition,
82% of the interactions used crucial gestures or landmarks,
and 44% used both. In the autonomous condition, 74% of
the interactions contained crucial gestures or landmarks, and
18% used both.

Direction Example 2
“Um, I guess for you you’d have to go up the
ramp. It would be best to [pointing] go over there
all the way around past the tables go up the
ramp and then you get to the vending machines
outside the bathrooms, kind of more towards the



end [gesturing backwards] than the elevator end.”
(P 53, Autonomous Condition)

Fig. 4: A participant using a crucial pointing gesture when
giving directions in a public space.

This is an example of the use of a landmark and two
crucial gestures. The phrase: “the tables” represents a unique
identifying object and, therefore, is a landmark. The pointing,
shown in Fig. 4 before “over there” is part of the unique
identification of the landmark because there are many groups
of tables in the location. Therefore, the pointing associated
with “over there” is necessary to identify the landmark and
is counted as a crucial gesture. The “gesturing backwards” is
also a crucial gesture because excluding the gesture from the
directions makes the meaning of “towards the end... than the
elevator end” unclear. The inextricability of the use of gesture
and natural language utterances is particularly interesting and
discussed more in Section VI

B. In-the-wild public deployment: Rejection

Condition # Asked # Gave Directions % Gave Directions
Telepresence 51 34 67%
Autonomous 151 34 23%

TABLE III: Number of study participants. “% Gave Direc-
tions” is the percentage that gave directions after we asked.

Although some people went the extra mile when provid-
ing help, extending beyond what the robot requested, for
instance, offering to walk the robot to its destination or open
doors (15%: 3% AI, 26% telepresence). One of the most
interesting results from this study was the “rejections”. Much
of the existing work investigating asking-for-help interactions
assumes that the person is invested in assisting. However, we
find that when deployed in public spaces, the reality is not
as optimistic.

We analyzed when people turned down the robot when it
asked for help. Telepresence impacted people’s willingness
to help the robot and how people talked about the robot
during interviews. Only 23% of people gave directions when
the robot was autonomous, versus the 67% in telepresence;
breakdowns of the number of people asked compared to
the number that provided directions are shown in Table III.
Still, there was not a detectable difference in the directions
themselves. This differed from our expectations. Our find-
ings contrasted with our assumptions that were based on
[45]’s findings from their teleoperated robot. This may be
influenced by the difference in task or robot form.

We also found that interactions with the robot did not fall
into a binary dichotomy of “ignored" or “provided help."
People were taking pictures of the robot and staring at it, as
seen in other relevant in-the-wild studies [31], but also other
more complex social interactions.

For example, in one interaction, the robot approached two
people to ask for help, and one person (A) rejected the robot’s
request and hid from the robot, while the other (B) engaged
in an interaction with a third person (C) who was passing
by. The first person (A) then joined the other conversation
(with B and C) and B began to answer our request for help
while the other two (A and C) continued conversing.

Additionally, there was a range in what a “rejection" could
look like. A rejection could be a person entirely ignoring the
robot’s request or expressing they would not help the robot.
Of the latter category, there was also a range in responses;
most rejected the robot by saying “no” or “I’m sorry,” or
“I don’t know,” maintaining some level of politeness [55]
despite not being prosocial.

There were also more violent rejections of the robot as
well. For example, we had one person face the robot in
the telepresence condition, look at the operator through the
screen, and say “f*** off evil robot and die," implicitly
rejecting the robot’s request for help, eschewing politeness,
not being prosocial, and doing so directly to the face of the
operator.

VI. DISCUSSION

In this work, we conducted an elicitation study to explore
the nature of how people provide directions to robots in
public spaces. Through this, we show a way to probe
underlying assumptions that persist through existing asking-
for-help work, tie in theory from psychology and linguistics,
and address open questions about how people interact with
these systems.

A. The Language for Spatial Information

The finding that everyone used topological language when
giving directions provides strong evidence that planning
topologically and creating interfaces that leverage topological
information rather than geometric information [5] can lead
to more fluid and natural interactions. In fact, many existing
asking-for-help systems already use landmarks for their
topological or semantic maps. These design choices can now
be motivated by real-world evidence from our field study.

The results from this study also stress the importance
of gesture interpretation tools [56], [57] for real-world in-
teractions. The fact that crucial gestures were so pervasive
in our data calls to linguistics literature. In linguistics in-
dexicals [58] contain a set of demonstrative pronouns such
as “this" and “that". The use of these indexicals integrated
with spatial representation makes them spatial deictic terms.
Spatial deixis are inherently grounded in space, centered
around the location object they are referring to [59]. There-
fore, the meaning of “that” as used in our study, is baked
into the location of the “hallway" it refers to. Empirical
research in children’s speech development claims that the



use of spatial deixis, “accompanied by a gesture from the
eyes, head, or hands, towards the entity or event in question
. . . this description of terms. . . [is] among the first to appear
in children’s speech." [60] It seems that from an early
age, humans entangle indexicals with gesture, and our study
further emphasizes this fact [61].

The finding that so many participants used gestures and
landmarks inextricably, and that certain landmarks only be-
came uniquely identifiable with gesture, shows that the two
may be even more integrated for robots asking for help than
previously thought. This finding suggests that when creating
robot systems for direction generation and understanding,
it may be useful to consider landmarks and gesture as an
intentionally integrated unit when defining abstractions.

B. The Complexity of Rejection

Through our study, we found interactions that demonstrate
how multifaceted the act of “rejection” can be. For example,
while people were less likely to reject a robot that was
not perceived as autonomous, our most extreme rejection
actually occurred with a real person’s face on the screen.

Rejection also becomes complicated when people are
already in a group, such as when the robot approaches two
people to ask for help Section V-B. There wasn’t a clear
answer for who rejected the robot and when. Beyond that, it
was sometimes unclear when each person’s interaction with
the robot “began.” We often think about these interactions in
dyads, but asking a group versus an individual can increase
the complexity of these interactions; that is not explored
extensively in the current literature.

Our experience with the one person who told the robot
to “f*** off [...] and die" calls back to in-the-wild deploy-
ments of different robots have reported unexpected bullying
behavior [34], which also reflects the extreme forms of
rejection we saw in our work, for example, [35] reported that
people punched, kicked, and slapped their robot. From the
combination of our findings alongside the existing work in
this space, perhaps willingness to help is more complex than
a binary dichotomy that is assumed in other literature. Some
rejections are harsher than others, and some forms of help
are more generous. Future systems may need to anticipate
these incidents on more continuous scales of rejection type
and severity.

C. Limitations & Future Work

The design of the “autonomous” robot influenced par-
ticipant interactions. The robot had a black screen when
the operator was not speaking. This may have influenced
participant interactions. Future work includes investigating
the impact of a wider range of robot forms.

While our conclusions— that there exist behaviors in the
real world not found in a lab study— extend to a general
population, our work is still limited by being run exclusively
at a university with a narrow sample size. Investigating a
more general population has great potential in identifying
even more valuable insights and ecological validity.

VII. CONCLUSION

Through this in-the-wild study of a robot asking for
directions in a public place, we not only found meaningful
answers to our posed questions about the use of landmarks
and the impact of robot form, but we also discovered how
inextricable gestures are from people’s utterances, and the
complexity of rejection. The study data will be made avail-
able (https://cyl48.github.io/). This work helps us expand
upon how we think about robots asking for help and identifies
informative findings for designing future robotic systems that
can expect the unexpected.
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